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The Solution to a Nonlinear Lamm Equation in the Faxén
Approximation
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An exact solution in the Faxén approximation is given for the Lamm aquation in which the sed;-
mentation coefficient is related to concentmtion as 1 =31 —ke). I ls shown that the solution in this
cage can be =xpressed in terms of the solution to the lincar case (k=0) with a modified azrgument.
The boundary sharpening phesomenon expresses itseH very cleazly in the eolution pres=nted here.
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Solutions of the Lamm equation for corstaot diffusion and sedimentation coefficients have
found wide application in the analysis of data from the ultracentrifuge [1]. It i= knowa that both
the sedimentation and the diffusion coefficiems depend on concentration, and in particular, the
sedimentation coefficient can be approximaied by

s =sof{1 4+ k) iy

where 5 is the sedimentation coefficient ar infinite dilution end & is a 2onstant which is a2 measure
of nonlinearity. Fujita has shown that if the relation of eq {1} is replaced by

s=5oll — kc) (2)

while the difusion coefficient remains independent of concentration, the resulting Lamm equation
can be linearized rigorously [2]. Fujita solved this Lamm equation in the Faxén regime by an
approximation technique. It is the purpose of this paper to show that an exact sclution of the
Lamm equation is possible in the Faxén regime, and that the solution for the nonlinear caze can be
written entirely in terms of the solution to the linear problem. The technique exploited in this
paper was originelly suggested in a prelimirary note [3] although the result ziven there centains
ar error, Our solution then enables one 10 derive an expansion in powers of the time variable
to as high a degree as desired, whereas Fujita's original solution was limited in this respect. The
Lamm equation can alse be solved with the ansatz of eq {2) in the rectangular approximation [4],
and an Archibald solution which takes account of boundary conditions can be written [5]. A de-
tailed comparison between solutions of the Lamm equation with the two forms of zedimentation
coeficient given by eqs (1} and (2} will be presented elsewhere [6}
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The Lamm equation will be written

Jde_13 7 8 aa
Et_rﬂr(rﬂ ar o1 kC}C) @

in terms of the solote concentration ¢, the diffusion coeficient B, sedimentation coefficient s¢, and
angular {requency w. Let o be the radial position of the menizens, and ¢ be the initia: concen-
traticn. Then the ransformations

8=rieo, €=2Df(s*3) x=(rnf, T=2ugt a=ke {4)

convert eq {3) into

af_ 4 o8
E_h}[“ﬁ-xﬁl_am} {5

This equation can be lineatized by introducing a new dependent variable aix, 7) by
8x. =22 1n uix, 7 6
) o ax o )

It proves convenient to also define new independent variables by
=2z, [=l-e— {7)
which, together with eqs (5) and (&) implies that & satisfies

lae #u ldu (8)

edl 0 iz

which is 10 he sclved with the initial condition
wer, =1, 050'52=expi{-:rz—-4], o2 %

We can solve eq (8) by a separation of variables. A general solotion for which dufdz remains
finite at x=101ig

iz, O=A+Bi+3 f " g iAZ)e-MTdA (10)
[ L]

where 4 and B are constants, and g() is to be determined from initial conditipns. Notice that the
first two terms are solutions to the homogeneous equation obtained by setting d:faf =0. Initially
we have

iz, l}]-A—Bz'——-zJ: £V, (A2l an
where g{A) can be calcuiated by regarding the right-hand side as a Hankel transform [6]. In this
way we find

2= A L ® haofute. 01— 4 — Botlder (12)
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Hence ufz, {1 is given by [7]

wzy=A+BA+: fﬁ [eler, 0)— 4 — Bo®|der f " AS e S hehe— sl gy
0 a

— & _i o2 20 —_ =
—a+Barted [Ted L(5) e 0-4-Bols a3

where fi{u) is a Bessel function of the first kind, with imaginary argument.

Since
J;'ase-;’:}f( {)do- =zele 14

we pee that the terms containing B cancel. The constant A can be determined by requiring that
the limiting solution for & — 0 agree with the known Faxén solution for constant s and D. It can
easily be verified that this s equivalent to setting £=1. Hence an expression for ez, {) is

r=*+:ﬁ TN e
iz, “'“”zecf (zec) Lea === 1) der. (15)

It will prove cenvenriemt for later purposes to perform ar integratien by parts, noting that fiiy)
=dlv)fdv. This leads 10 the expression

l.'.l'+|'.l":l

ulz, ;}=1+ﬁf oe '(Eei;) [(1-allew = -4~ 1]do. {16}

Differentiation according to eq {6) together with an integration by parts leads to an expressione

for 8z, £),

1- = (2 o)

E{z,{}=m T g 'r"(E g) et -sder, (17)

When a=10 thia relation reduces to the known Faxén solution, which will be denoted by 8z, {}:

&z, {::-ﬁ—g re- S, (ﬁ)dw (18)

We now notice that ail of the integrals appearing in the expression for @z, £) have the same general
form of an exponential of a quadratic in o, multiplied by the common factor

o exp [ {ﬂ:;ﬂ} k (5eg)

Hence all of the integrals are expressible in lerms of da provided that the arguments are properly
chosen. After some algebra it ia found thal

be, 0= —{ & [-Toaloni*, 1) a9)
'[“+ e 1+ﬁe H-aSleei, ;'}—ﬁ Bz, O
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where

z¥=

z __t
T—al' ¥ 1—a i20)

Simple properties of the solution follow immediately from the represemiation of eq (19. The
parameter ofe which appears in the expression of eq (19) is commonly greater than 10 for values of
D, s, and @® (which validate the approximation of eq (2)) and the Faxén approximation. Hence
the exponential terms in eq (19} predominate when

2

ia positive by an otder of magnitude greater than ¢fa. When this is the case we have
1-
Bz, ;}~1—;—fi=[a+{1 — e (22)

which defines the behavior of the plateau region. This can alse be verified directly from eq (5).
When the quantity of eq (21) is negative by an order of magnitude greater than efe, 8(z, {) is effec-
tively equal 10 zero. The rransition region oceurs from values of ¢ for which

ﬁ—lﬂﬂ (ﬁ) (23)

Thus, io the limit € =1 the transition region (from essentially zero to a plateao value) is very sharp,
and for fixed € and increasing o the transition region also becomes sharper, as indeed is well known.
If the gradients are denoted by Giz, {) and Gyiz, £), i.e.,

daf o

ﬂ{z: m= E‘{F}'Fu]‘ Gﬂ‘{zf ;}= H{r,lrru} {24}
then we can write for Giz, £k
1
112 6z, 0)
__1 Gz, §) __1-¢ ( 1—¢
G TR F i e LT 1o P 2 6 1)
X{E {L— e _2[1_ "_.]30{ * gt}+5ﬁ£:i’;ﬂ_](;ﬂ{ * {*}—Lﬂn{z E}I} {25}
BeT—(a+ " < MW BT Ty T ST T
where
Flz, 2%, &, (=14 1_1{;1;”; e-Sl-wSalona, E*J—ﬁﬂulm £ (26)

It ia possible now to derive suceessive approximations 10 &z, £} by expanding it in powers of
(ef)*®. That this is the nalural parameter for the expansion will be seen later. Since &z, {)
depends only on 8z, {) we musl first consider the expansion of the latter function for small £,

zr

For smail { the Bessel funciion f (Eﬁ) has the asymptotic expansicn [7]
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_=y rg+dh
U T+ b

where
(28)

Therefore B4z, {) has the expansion

e 0= S0 G [ 05

We now considet the integrals which appear in this series and expand them in powers of (&l)"2.
To carry out this expansion we write, for fixed o and amall ¢

{2+ uV2elyirz= i (_'—*H' ”2) w2l Y1l -, (30)
r

r=0

This ¢an be further transformed by noting the identity

(—jt1f2)={__”r (r+.fr—34’2). {31}

Finally, combining eqs (29), (30), and (31) we find that the complete asymplolic expansion of Lthe
Faxén solution can be written as

— ‘_3||r2 IEE{:I"""E Pz
Bolz, -1~ B ("‘ f ) Ly ( 32
2, {)~ ijzzj i—372 ” y v’z_e{) {32)
where the [/dy) are defined by
H,{y}=r e gy, (33)
§#

In particular, the first two terms of eq (32) yield the usual Faxén approximation

o ) () )

in which Ugy) can be expressed in terms of an error function. A complete esymptotic expansion
for &z, £} can now be obtained by combining eqs (19 and (32).  Similarly, 38/8{rfry} is expressible
in terms of 4z, ) and it derivative, Gylz, {), which has the sxpansion

L ETTE & m— J— 32y (2ey*
Gl D~ o 2 ¢ s (") R

x{=2 0, (i,;—z) +f§;}f¥i 1% 69

The lowest order Faxén approximation to Mz, £} is

8(z, L =65{) [1 - (36)

1—¢(i,;‘T;)+e—%[1- =S ::-(i%



where @gll) is the normalized plateau concentration (eq (22)} and @) ={2m7)- 112 J-n exp [—x2f2)

B
dx is the complementary error fonction, To this approximation, the gradient is

88, a00_emtata]

T 7]
fomgefam) - (- o
+ E[l’izﬂ{:i 'i'(i%) (] _if"(‘i"%))] (37
where
p=1-d( )+« H-wtale{ZR) 3

When a is set equal te ¢ eq (37) reduces to the known Faxén solutien.
Fujita [2] showed that in his approximation the pozition of the maximum is given by

o= Foe [1 —afl — e 7). (39
The result of eq (19) implies that this i= modified to
Fmax = Foe’[1 —a(l —e™)|[1+ f]. {40)

The factor fis generally of the order of 0.1 or less and therefore Fujita’s result for the position of
the maximum gradient iz sufficient for all practical purpeses. It also follows that Fujita’s calcula-
tions for the height-aree ratio are sufficiently good for practical purposes.
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